

Autoware Open AD Kit

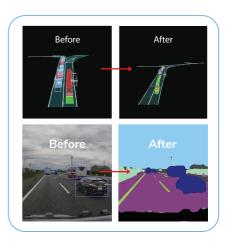
A Mature SDV Framework for Autonomous Driving

SDV requires a dramatic change in how the automotive software is developed and deployed requiring new methods and techniques, such as containerization, cloud-native development, consolidated ECUs, and connected software upgradeability. It calls for collaboration based on open standards across the industry.

As the first SOAFEE Blueprint, the Open AD Kit brings key automotive stakeholders together to prototype and build a full-stack open-source autonomous driving software framework with a microservices architecture

Open AD Kit Blueprint

A quick glimpse at the Open AD Kit project



Improve and Enhance AD Features in a Cloud-Native Way

In the SDV world, the vehicle development and enhancement no longer stop with the SoP. Through OTA updates, the vehicle performance can be improved, new functionalities can be added and the vehicle becomes a connected and living object.

The new Open AD Kit demos at CES 2025 showcase how the autonomous driving behaviour can be improved via software updates and how a specific AD stack component can be enhanced by updating the containerized workload.

To design, develop, test and deploy AD solutions using modern software delivery methodologies, try Autoware Open AD Kit!

Completing the Big Loop

Software First

Built and tested on the cloud and deployed to the edge using orchestration.

Modern and Agile

Leveraging modern software development paradigms such as containerization and cloud-native.

Built on the Pillars of the Software Defined Vehicle

Containerized

Lightweight microservices allowing ease of development and deployment.

Testing in the Cloud

Using CI/CD methodologies allow massively scalable testing.

Over-the-Air (OTA) Updates

Using orchestration and connected services allow software upgradeability.

Environment Parity

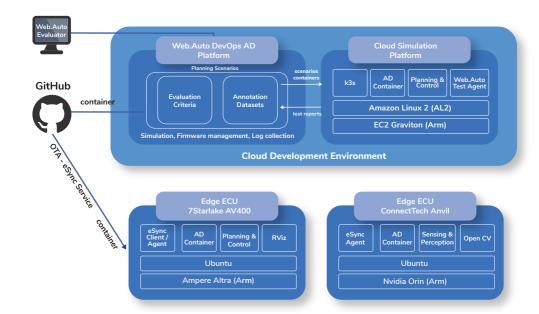
Running on the Arm architecture with instruction set parity between the edge and the cloud

Continuous Software Upgrades


Improving Performance

Autonomous driving behaviour can be altered and/or improved after the product rollout - via continues software updates/upgrades using the OTA technology

Enhancing Functionality


Autonomous driving stack components can be exchanged or improved via updating the specific workload without the need of updating entire stack

Bridging the Cloud and the Edge for AV Development

TIER IV's Web.Auto platform allows Autoware developers the use a plethora of DevOps tools to build their solutions on cloud and later on deploy those solutions on edge devices via OTA technology.

Experience at the TIER IV booth (LVCC West Hall, #3460)

Mixed Criticality and Shift-Left

Achieving Mixed Criticality

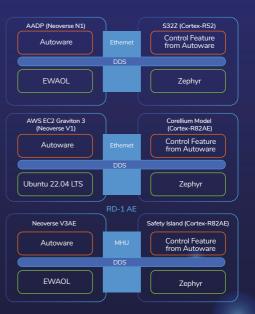
Autoware's control feature is ported on safety-critical (RTOS) environment.

Mixed Criticality and Physical Hardware

Autoware is deployed on the AADP (main compute) and the S32Z (critical compute).

Mixed Criticality and Virtual Hardware

Autoware is deployed in the cloud using AWS EC2 Graviton (main compute) and Corellium virtual hardware (critical compute).

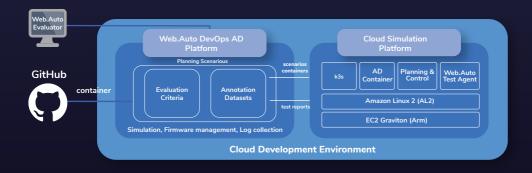


Mixed Criticality and Virtual Platform

Autoware is deployed in the cloud using Corellium virtual hardware (main and critical compute).

Enabling Shift-Left

Access future IP before silicon is available. Save costs and get faster feedback.



Virtual Prototyping Before the Silicon is Available

Shift-left paradigm is bringing cutting-edge innovation to the automotive space.

You can simulate Autoware workloads on Corellium virtual platform - this means you can validate workloads even before the silicon is made available.

Browse All Demos and Get Started

Software in the Loop

Simulating the validated containerized workloads for benchtop and batch cloud testing.

Benchtop **Testing**

Hardware in the Loop

Deploying validated containers on actual an vehicle to perform road testing.

In-Vehicle **Testing**

Cloud Batch **Testing**

Future Work Coming to the Open AD Kit

Simulation in the Cloud Adapting AWSIM Digital Twin Simulator for cloud use, and incorporating into the CI/CD pipeline.

WebRTC Based Visualization Integrating WebRTC to have browser experience for the user interface.

Unified Acceleration Commonizing acceleration technologies to streamline

the solution.

Creating distinct reference designs for various use cases, allowing easy replication of solutions.

Resources and Useful Links

Join Discord Autoware Github Become a Member Join a Working Group Ecosystem Open AD Kit

Autoware Open AD Kit Project is brought to you by

TIER IV

Do you want to explore further?

Getting Started
Guide

Read technical blogs, watch Autoware podcasts and signup to our newsletter to stay up-to-date with the **Autoware Foundation**.

